
A class of exactly solvable potentials related to the Jacobi polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 131

(http://iopscience.iop.org/0305-4470/24/1/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 10:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 131-146. Printed in the UK 

A class of exactly solvable potentials related to the Jacobi 
polynomials 

G L6vai 
Institute of Nuclear Research of the Hungarian Academy of Sciences, Debreen. PO 
Box 51, Hungary 4001 

Heceived 31 July 1990 

Abstract. W e  investigate a family of solvable potentials related to the Jacobi poly- 
nomials. This one-dimensional potential family depends on three parameters and is 
restricted to the domain I 2 0, so i t  can be interpreted 84 the radial part of a central 
potential in three dimensions (with 1 = 0). Closed expressions are obtained for the 
bound state energy spectrum and the wavdunctions. The supersymmetric partner of 
this potential is also determined and it is found not to belong to the same potential 
family. It is shown that this potential family is B special subclass of the general 
six-pwameter Natanzon potential class and similarities with another subclass. the 
Ginocchio potentials, a r e  pointed out. Some aspects of supersymmetric quantum 
mechanics and shape invariance are also discussed in connection with the potential 
family under study. 

1. Introduction 

Solvable problems of non-relativistic quantum mechanics have always attracted much 
attention. T h e  introduction of supersymmetric quantum mechanics (SUSYQM) (Wit- 
ten 1981) had a strong impact on these studies and helped to view this field from a 
new angie. T i e  main resuits of SUSYQM are simply stated (see, for exampie Cooper 
and Freedman 1983, Andrianov e t  a/ 1984, Sukumar 1985). If we know the ground 
state wavefunction of some potential i'-(x), we can easily construct another potential 
V+(z), which is called the supersymmetric partner of V-(z ) ,  and which has the same 
energy eigenvalues, except for the ground s ta te  (which is missing from the spectrum 
of V+(z)). In fact, a whole sequence of potentials can he generated in this way. 

invariance (Gendenshtein 1983). Many of the potentials related by supersymmetry 
were found to have similar shapes (i.e. to depend on the coordinate in a similar way), 
only the parameters appearing in them were different. It turned out that  the energy 
spectrum and the wavefunctions can be  determined by elementary calculations in  this 
case. These shape-invariant potentials were identified with many of the already known 

originally it was thought (Gendeushtein 1983) that all solvable potentials were shape 
invariant, i t  turned out that  shape invariance is not a general feature of solvable 
potentials (Cooper e t  al  1987). Later it was shown that shape invariance and SUSYQM 
are closely related to the factorization method (Schrodinger 1940a, b, 1941, Infeld 
and Hull 1951) (and therefore t o  the Darhoux (1882) method of solving second-order 
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differential equations), in fact the domain of applicability of shape invariance turned 
out t o  be strictly identical (Montemayor and Salem 1989) with that  of the factorization 
method of M e l d  and Hull (1951). 

Besides the results described above the combination of SUSYQM with ‘traditional’ 
approaches to solvable potentials proved to be fruitful. Using the concepts of SUSYQM 
the Natanzon (1971, 1979) potential class (which is a rather general class of solvable 
potentials related to the hypergeometric functions) was generalized t o  even wider 
classes of solvable potentials, in several ways (Cooper el  al  1987, 1989). The  question 
of solvability and shape invariance was studied, and although it was shown tha t  the 
Natanzon potentials do not fulfil the shape-invariance requirement in general, the 
possibility of finding further shape-invariant potentials besides the already known ones 
cannot be excluded (Cooper e2 a/ 1987). In a previous study (Lkvai 1989) we have 
also used an already known method (Bhattacharjie and Sudarshan 1962) t o  search 
for further shape-invariant potentials by linking it with the formalism of SUSYQM. 
As a by-product of these investigations we identified a class of solvable, but non- 
shape-invariant potentials. Here we discuss it in detail and show that i t  belongs t o  the 
Natanzon class. Although this potential class is not shape invariant, it preserved some 
features of shapeinvariant potentials, and, since in terms of complexity it is between 
the general Natanzon potentials and their shape-invariant subclass (similarly to the 
Ginocchio (1984, 1985) potentials), it can help our understanding of the relabionship 
between shape invariance and solvability. 

The  arrangement of this paper is as follows. In section 2 we review the main results 
of our previous study (Lkvai 1989) necessary for the introduction of the new potential 
class and give a brief review of the Natanzon potentials. In section 3 we present a 
detailed study of this potential and its relation with the Natanzon and Ginocchio 
potentials. Finally, we summarize the results in section 4. In the appendix we give 
a compilation of the basic equations of SUSYQM and shape invariance necessary in 
sections 2 and 3. 

2. Some aspects of solvable potentials 

In a previous publication (Lkvai 1989) we have performed a search for shape-invariant 
potentials using a simple method of finding solvable potent,ials and linking it with 
the formalism of SUSYQM. This method proved t o  be successful in identifying and 
classifying shape-invariant potentials. Since in that study we concentrated on s h a p e  
invariant potentials, the possibility of investigating non-shape-invariant, but solvable, 
potentials with the aid of this method was left open. Here we try t o  fill this gap ( a t  
least partly) by investigating a family of potentials related to the Jacobi polynomials. 
First we briefly review this simple method used previously, and its relation t o  the 
formalism of SUSYQM. 

Consider the Schrodinger equation in one dimension (setting h = 21n = 1): 

d Z q  - + ( E  - V(z))V(z) = 0 
d z Z  

Its solutions are generally written as 
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where F ( g )  is a special function satisfying a second-order differential equation 

T h e  form of Q ( g )  and R(g) is well defined for any special function F ( g ) .  Substituting 
(2.2) into (2.1) and comparing it with equation (2.3) we get the following results: 

and 

Now we can express E - V ( z )  in terms of the other quantities in several ways: 

( 2 . 4 )  

The  last equation was obtained after eliminating f (z) and its derivatives using equa- 
tion (2.4). We can use equation (2.8) t o  generate potentials by choosing Q ( g )  and R(g) 
(e.g. the type of the special function F(g)) and experimenting with various internal 
functions g(z). (In principle we could try to proceed the other way round by substi- 
tuting some V(z) potential function in (2.8) and considering it a differential eqnation 
for g(z), but there is not too much hope for solving it due t o  its complex nature.) 

Equation (2.7) offers a convenient way t o  link this simple method with the equa- 
tions of SUSYQM (see equation (A.2)), since whenever R(g(z))  = 0 holds, we get 

E - V(z) = -W2(2) + W'(z) (2.9) 

where 

We derived the latter equation from the former one using 

(2.10) 

(2.11) 

(2.12) 

obtained from (2.4). Since (2.9) is the standard expression for potentials in SUSYQM, 
inspecting the structure of R(g) can help us to decide which special functions F ( g )  
are more appropriate in SUSYQM applications. In our previous study (L6vai 1989) we 
used the orthogonal polynomials as special functions, since the structure of R(g)  in 
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that case is such that it vanishes for n = 0. (AS a counterexample we mentioned the 
Bessel functions, for which R(g) = l-v2/g2 holds, so its application in SUSYQM seems 
less promising, since R(g) cannot he set to zero, irrespective of the parameter v.) 

In the case of the P?!”’”(g) Jacobi polynomials we have 

and 

so equation (2.8) is written as 

E - V ( z ) = - - - -  l g” ’  3 (”)’+“‘(.+y) ( n + a + ; + l )  
2 g‘ 4 9’ 1 - g2 

(2.13) 

(2.14) 

(2.15) 

Now, observing that there is a constant term ( E )  on the left-hand side of (2.15) we 
require some of the terms on the right-hand side to he constant. This requirement 
amounts to setting up differential equations for g(x). If we require one of those terms 
which contain a, @ and n to he constant, this differential equation is a first-order 
one and i t  can he solved in a straightforward way. In our previous study (L6vai 
1989) we identified two potential classes related to the Jacohi polynomials setting 
the first and the second such terms of (2.15) to constants. These potential classes 
were labelled by the symbols PI and PII, and they turned out to be the well known 
shape-invariant potentials related to the hypergeometric functions. (We identified, 
however, one potential belonging to the PI1 class, which was missing from other works 
discussing shape-invariant potentials.) Similar treatment of the L?)(g) generalized 
Laguerre and the H,(g) Hermite polynomials resulted in the identification of every 
single known shape-invariant potentials. Although this simple method of generating 
internal functions g(z) does not guarantee that we find every single potential related 
to the Jacohi polynomials, it is a convenient way of finding the most obvious ones. 
Later we shall see how it  can be generalized in order to get a wider class of solvable 
potentials. 

On the basis of the procedure described above we introduced a straightforward 
classification scheme of shape-invariant potentials, which turned out to he basically 
the same as that oflnfeld and Hull (1951) based on the factorization method, and that 
of Miller (1968) originatingfrom the Lie theory of special functions, hut it surprisingly 
differed from the classification of Cooper et al (1987) which was designed following 
the principles of SUSYQM. 

The remaining terms of equat,ion (2.15) were not studied in detail. We have ne- 
glected the differential equation 

(2.16) 
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referring to the fact that solving i t  we can get only the inverse x(g) function in closed 
form. As we shall see later this is not a serious problem from the point of view 
of solvability. In the next section we shall study the potential class obtained from 
equation (2.16). In analogy with the PI and PI1 shape-invariant potential classes 
related to the Jacobi polynomials, we call this potential class the PI11 potential family. 
A further possibility is to take combinations of terms appearing on the left-hand side 
of equation (2.15) and setting up more complex differential equations for ~ ( x )  (with 
several parameters for example), but we do not discuss this possibility further here. 

The simple method of obtaining solvable potentials reviewed in this section has  
been known for a long time (except, of course, its relationship with SUSYQM). Bhat- 
tacharjie and Sudarshan (1962) applied i t  to the hypergeometric, confluent hyper- 
geometric and the Bessel functions. The combination of sUSYQM and some other 
traditional approaches to solvable potentials has also proved to be fruitful. Using the 
techniques of SUSYQM the Natanzon potentials (Natanzon 1971, 1979) which form a 
rather general potential class related to the hypergeometric functions, were generalized 
to an even wider class of solvable potentials (Cooper et  a1 1987). 

The general form of the Natanzon potentials contains six parameters: 

V ( z )  = [fz(z)(z(z) - 1) + ho(1- 4.)) + hiz(x) + lI/R(z(z)) 

+ {a + [Q + (Cl - c o P z ( z )  - 1)1/(4z)(42) - 1)) 
- 5 h / 4 R ( ~ ( ~ ) ) } ~ ’ ( + ) ( l  - Z(Z))’/R’(Z(Z)) (2.17) 

where 

(2.18) u<.<- \ \ -”- ’<- \L/”  ~” ”\./*IL” 
’L\*\*,) - U 1  \*) T \“1 - C O  - U,”\*) T LO 

and 

(2.19) 

The hnction z ( i )  E-ust be scch ?hst i! zaps the !U!! z x i s  t= the z = [O, I] in!erua! 
and it obeys !he differential equation 

2 A = (a - co - c1) - 4c0c,. 

dz 2z(x)(l  - z ( x ) )  _ -  - 
dx R’/’(z(x)) ‘ 

(2.20) 

The we!! known shzpe-invzriant potentiz!~ correspond ?a some simp!e choice of R(z). 
The energy eigenvalues tn are obtained from the following equation: 

2 n +  1 = (1 -at, + f)”’ - ( I  - cotn + ho)’/’ - (1  - cltn + h,)’/’  

a, - P,, - b, (2.21) 

whiie the wavehnctions are written as 

*,, U R ~ / ~ ( ~ ( ~ ) ) Z P J ~ ( . ) ( I  - z(z) )~* / ’  , ~ , ( - n , a ,  - n; 1 +p,;z(z)) .  (2.22) 

We shall use these equations to discuss the relationship of the PI11 and the Nat,anzon 
potentials. 
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3. Detailed study of the PI11 potential family 

As discussed in the previous section, solving the differential equation (2.16) we can- 
not express the function g ( s )  in closed form, only the inverse " ( 9 )  function can be 
determined: 

s ( g )  = C-'/'( tanh-'(g'/') - tan-'(g'/')). (3.1) 

I t  is easy to show that this function is real for g 2 0, but it is purely imaginary for 
g < 0, since 

s( -g)  = -i "(9) (3.2) 

so negative values of g must be excluded if we want to interpret I as the coordinat,e. 
s(g)  maps the g = [0,1] interval on the half axis s = [O,co) in a strictly monotonic 
way. Its long-range behaviour (z > 1) is similar to that of the tanh-'(g'/') function, 
while for small s (and g) its behaviour is determined by the first term of the series 
expansion 

(3.3) 

so i t  can be approximated with z r C-'/22g3/2/3. On the basis of these arguments 
we can see that the approximate behaviour of g(z) is g(z) _N C'/3(3z/2)2/3 near the 
origin, while its long-range behaviour is approximately g ( s )  L- tanh'(C'1's). Since 
the g(z) function can be computed numerically to any desired accuracy, we can also 
determine the wavefunctions and the potential (which depend on g(z)) for any value 
of x. Therefore i t  is enough to calculate these quantities as a function of g, and later 
we can inspect their approximate dependence on z whenever necessary. 

Now let us turn our attention t o  the explicit determination of the potent,ial in 
terms of g, using the procedure described in the preceding section. In order to do this, 
first we introduce the new parameters p, = (a, + @, + 1)/2 and 9" = (On - a,)/2. 
(Here we assume that these variables can explicitly depend on n.) Equation (2.15) 
can now be rewritten as 

5 -3 E,-V(g(+),p, ,9,)  =C[,s ( z ) + q - ' ( z ) ( - 9 ~ + p n + n ( n + 2 p , ) + ~ )  

+ 9(") (i$ - (P, + n)') + 9,(2Pn - I ) ] ,  (3.4) 

In order to have the same potential function for any n we now introduce explicit 
expressions for p, and qn, which set the coefficients of the g-dependent terms i n  (3.4) 
to n-independent values. To this end we first take equation (3.4) for n = 0, dctermine 
the expression [E, - V(g(s),p,, 9,J] - [ E o  - V(g(z),po,qo)] and set the coeficients of 
the g-dependent (coordinate dependent) terms to zero. Doing so, we get the following 
equations for p, and 9,: 

(P, + n)' = pi 

- 9, + P, + n(n + 2p,) = -9; + po 
2 

(3.5) 
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Introducing the notation p E po and q E qo, we can readily determine the explicit 
expression for the parameters p, and qn: 

p , = p - n  

for n = 0 

q " = { q 2  ( q  + ( p -  4 ) ' -  (p- 4 - n ) 2 ) 1 / 2  for n > 0. 
(3.6) 

The final form of the potential function, which is now free from the quantum number 
n,  is the following: 

V ( Z )  = c [ -q(2p  - 1) + 9(") (P2  - h) + g-y.7) (8 - p + 5 )  - &g-"(z)] (3.7) 

uihi!e for ?he energy expreszion ( ~ h i c h  originates frnm the constant term in egcatio!! 
(3.4)) we get 

(3.8) E, = 2C ( p  - f - n)  [q2 + ( p  - 4) - ( p  - 4 - n )  ] 
(This expression is valid only for n > 0, while for n = 0 we, of course, get Eo = 0.) 
Due to the square root in equation (3.8) the stucture of the energy spectrum is more 
complex than for other solvable potentials. From equations (3.7) and (3.8) one can 
see that the PI11 potential family depends on three parameters, two of which ( p  and 
q )  determine the shape of the potential (as we shall see later) and one (C) is a scaling 
factor of the energy (and the coordinate). 

We can use equation (2.11) to  express the W ( z )  = W(g(z ) )  superpotential for th i s  
class of potentials: 

2 2 112 
- 2C ( p  - f) q. 

W(g(z ) )  = C'/2[ ( p  - $) g ' / 2 ( 2 )  - qg-1/2(z )  - $g-3/2(2)]. (3.9) 

The supersymmetric partner of V ( z )  E V- (z), denoted by V,(z) can also be calculated 
now: 

;r (-1 - r r1,,-31+.) I n n - 2 ~ , 1  I n - l i l i  ("2 - 3) L A \  I,- 11 I,- 2) - 7 , ~  
+\*I - - L 1 6 Y  \ -1  8 Y Y  1-1 ' Y 1-1 \Y  81  I Y \ - l \ P  4 1  \P 4 1  1 P Y I '  

(3.10) 

I t  is easy to  prove that V+(z )  and V(z) do not fulfil the shape invariance condition 
(A.8), so this new potential family is an example for non-shape-invariant solvahle 
potentials. (An indication for this is, for example, the different numerical coefficient 
of the terms containing g - 3 ( z )  in equations (3 .7 )  and (3.10), and also the presence of 
the g-'(z) term in equation (3.10), without equivalent in equation (3.7).) 

Let us first inspect the behaviour of the potential V ( z )  = V(g( z ) ) .  It is easy to  
prove that both V ( z )  and V,(z) go to  the same value in the z - 00 (i.e. g - 1) limit. 
This common value depends only on p - q: 

2 V ( z  = a) = v. 7 L  (2 =a) = C ( p -  0 -  f )  = Ca2. (a.!!) 
I t  is also easy to  determine the approximate behaviour of these potentials near the 
origin. In particular we get the following approximations (from (3.3)) in the z - 0 
(g - 0) limit: 

V ( z )  ? -&z-Z (3.12) 
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for V(z) and 

V+(z) &x-Z (3.13) 

for V+(z). Note, that these equations are independent of the potential parameters, 
The considerations presented above suggest that these potentials should be viewed 

as the radial part of a spherical potential (with I = 0). This development naturally 
raises the question of whether the particle ‘falls’ into the attractive V(z) potential 
well a t  the origin or not. The answer is definitely ‘not’, since we know (Landau and 
Lifshitz 1977), that  the falling of a particle into the potential V(z) E -y/z2 can occur 
only if y > a holds, while in this case we have y = 2 < 1 

Besides the z + 0 (g -* 0) and z + m (g -+ 1) cases we can study the behaviour of 
the V(z) potential in the domain between these limits as the function of the parameters 
p and 9. In order to determine whether it has any minima or maxima, we calculate 
the derivative of V(z) with respect to 2: 

36 4 ’  

(3.14) 

As we expect, the derivative goes to +m for g I 0 and to zero for g I 1 .  The 
behaviour of the potential in between these two limits can be determined inspecting 
the dV/ dg derivative: 

(3.15) 
dV - = C [ ( p 2 -  &) +g-2 ( - 9 2 + p -  5 )  + gg-41 = o .  
dg 

This is a second-order algebraic equation for gW2 and its solutions are 

2 2 -  8 
(91,2)- - ~ [ 9 ~ - P + i * ( ( 9 ~ - P + 2 )  - ? ( p i -  & ) ) 1 ’ 2 ] .  (3.16) 

Equation (3.16) can help us t o  find the maxima and minima of the V(z) pot,ential 
for given parameters p and 9. Since the domain of definition of V(g) is the int,erval 
g = [0,1], not every solution of equation (3.16) gives the location of a minimum or a 
maximum of V(z). Inspecting the real roots of (3.16) in the g-2 = [I,co) domain we 
can establish the following. If the discriminant of (3.16) is negative, V(z) is stricbly 
monotonics, since it has  no extrema. If the discriminant is zero (i.e. if we have two 
identical rmts  of (3.16)) and (g,)-’ = (g2)-2 5 1,  then there are still no extrema, 
since in this case g1 = g2 > 1 ,  so the roots are outside the domain of definition of V(g). 
If g1 = g2 < 1, V(g) (and therefore V(z)) has a point of inflexion. If the discriminant 
is positive, and both g1 and g2 are located in the domain g = (0, l ) ,  V(z) first takes 
a maximum then a minimum and increasingly tends to V(z = m) with increasing 
I. If only the smaller root (g2) lies within the interval g = (O,l) ,  V(z) has  only a 
maximum and decreasingly tends to V(z = w), while if both roots lie out.side the 
specified domain, V(z) has no local extrema. In figure 1 examples are presented for 
each pattern described in this paragraph. Here we plotted V as the function of g (and 
not z), but this does not affect the general pattern of local minima and maxima. In 
figure 2 we present a ‘map’ of the ( p ,  0) plane divided into domains corresponding to 
potential types described above. It can be seen from figure 2 that potentials with no 
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0 

- - h -20 2n" 0.2 0.4 0,6 0.8 -20 2Ezl 0 2  0.L 0.6 o s  

A 

9 
Figure 1. Characteristic shapes of the PI11 potential depending on the potential 
parameta p and q; (a) p = 4, q = 5,  (a) p = 7. q = 5 ,  (e) p = 8.279, q = 5 ,  ( d )  
p = 10, q = 5. The potential V is plotted against the variable g (rather than z ) ,  
but due to the strictly monotonous nature of g ( z )  this does not a f k t  the general 
trend (maxima and minima) of the potential. Independently of the parameters the 
potentials go to -m BS V ( g )  2 -A  , 6 g  4 ' In the g - 0 limit. 

extrema are located near the 9 = 0 line, while potentials with only a maximum can 
be found near the p = -1/2 line. 

Similar treatment of the V+(z) supersymmetric partner potential is also possible, 
but in this case we have to analyse the roots of a third-order algebraic equation t o  
find the extrema of the potential, so we shall not study this case in detail. 

Now let us turn our attention to the wavefunctions. Using equation (2.12) they 
can be written (without normalization) as 

pn(g(z)) = s'/*(z)(~ + g ( . W 2 ( 1  - dr)) 4 2 p ( * , , P . )  w)) 
= d/4(2)(1 +g(  Z))(PDtqn-1/2)/?(1 - g(z))(Pm-~"-l/2)/2 

p ~ . - ~ . - 1 / 2 , P . t ~ . - 1 / 2 ~  (dx)). (3.17) 

As we can expect on the basis of arguments presented earlier (Landau and Lifshitz 
1977), this function can be approximated with z l j6  near the origin. In the g = [O, 11 
interval each component of rYn(g) is bounded from above, with the exception of the 
function (1 - g)"*/2, which tends to 00 for g + 1, i f  a, is negative. We can use 
this fact to inspect when we can get regular, normalizable solutions, i.e. to determine 
the number of bound states for arbitrary values of p and q. It is easy t o  prove that 
whenever an = p,, - 9" - 7 < 0 holds for a given n, the same will be valid for anti 
as well, so the bound states are characterized by the quantum numbers n < n,,,. 

1 
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-1 0 0 10 

a 9 
Figure 2. The domains of the (p.q) planecorre- 
sponding to the charactehtic shapes of the PO 
tential displayed in figure 1. 

Figure 3. The number of bound states of V-(x) 
(right) and V+(x) (left) depending on the value 
of the parameters p and 'I. 

Another development which can b e  seen Trom equation (3.17) is t ha t  wavefunctions 
with a, = 0 tend t o  a finite constant value for z - m, so they are not normalizable. 
In order to normalize the wavefunction we have to compute the following integral: 

This integral can be computed numerically. It can be seen from the behaviour of the 
integrand near g = 1 tha t  this integral is finite if a ,  > 0 holds. 

The  results obtained in the  previous paragraph can be summarized in figure 3, 
which is another 'map' of the ( p , q )  plane showing the number of bound states in 
V(z)  (and in V+(z)) assigned t o  specified values of p and q. From figure 3 it can 
be seen that  a large area corresponds to potentials with no bound states: whenever 
a = p - q - 5 0 holds there will be no bound states of V(z)  It is interesting t o  
compare figures 2 and 3. One can see, for example, that  potentials having only a 
maximum (case (a) in figures 1 and 2) can support only one hound state for q < 0 
and none for q > 0, while potentials having both a maximum and a m i n i i n ~ m  (case 
( b ) )  and potentials without extrema (case ( d ) )  can support any specified nnmber of 
bound states. The  lines separating the sections of figure 3 originate from the following 
equation (obtained from en = 0): 

(3.19) 
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The  upper limit of n for regular solutions is the following: 

(This equation is also obtained from a, > 0.) 

ZOO 

- 
0 N 

Gioo  
9' 
". 

9 

* - 
i 

0 

0 1 2 3 4  

x 

(3.20) 

U 
0 1 2 3 L  

x 

Figure 4. The PI11 potential and its supersymmetric partner for the parametem 
p = 36, p = 20 and C = 1, displayed together with the squared modulus of the 
wavefunctiono. (The true behaviour of V-(z) cannot be seen near the oriin. V - ( z )  
has a maximum at I = O.OOi7  and tends to -cm in the I - 0 limit.) 

One can see from the structure of the energy spectrum (3.8) tha t  its highest 
possible value is the  same as V(z = CO), which means tha t  carefully tuning p and 
q we can obtain an  energy level arbitrarily close to V(z = CO). This can be seen for 
example from the  following relation: 

2 (3.21) 

which means t h a t  approaching zero with 01, we can set this difference as small as 
we wish. A t  the same time, due to t h e  presence of the term (1 - ~ ( z ) ) " " / ~ ,  the 
wavefunction slowly 'flows out '  from t h e  potential well. 

We can also determine the explicit form of the wavefunctions Ik.k+'(z) associated 
with the V+(x) supersymmetric partner potential. In terms of supersymmetric quan- 
tum mechanics (see equations (A.4)  and (A.7)) they can be written as 

2 
V ( 2  = 02) - E" = c ( p ,  - f - q,) = can 

Ik.!.,+)(z) cz A Ik.$)l(z) 

= A @"+,(Z) 
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(3.22) 

Here we used the recurrence relation for the derivabive of the Jamhi po!yn~m& 
(Abramowitz and Stegun 1970), and as a result of this, the wavefunction is the linear 
combination of two Jacobi polynomials. (Note, that the parameters of the two Jacobi 
polynomials are the same, a,+, and &+,, but their indices differ.) The  structure of 
these wavefunctions shows that V+(z) does not belong to the PIII potential family. 
Studying the regularity of the wavefunctions in (3.22) we find that the nnmher of 
bound states supported by V+~(x) is m -  1! if V ( x )  has m bound states. (This is what 
we also expect from the theory of SUSYQM: see equation (A.6).) The 'map' of the 
(p,q) plane, displayed in figure 3 can be used for Vt(z) as well: on its left-hand side 
we presented the number of bound states supported by the potential V+(z) for any 
values of p and q. It is clear from equation (3.19) that (2p - l)-' does not affect 
the regularity of the wavefunctions, since bound states of Vt(x) can occur only for 

As an illustrative example, in figure 4 we present V(z) and its supersymmet,ric 
partner, V+(z), for the p = 36, q = 20 case. These potentials support 7 and 6 bound 
states, respectively, and belong to domain ( b )  in figure 2 We also present the squared 
modulus of the wavefunction belonging to these states. The true behaviour of V ( z )  
near the origin cannot be seen in figure 4: in fact it has a local maximum at  x = 0.0077 
and tends to -CO for x -+ 0. (Potentials supporting a large number of states belong 
to those domains of the ( p , q )  plane where the location of the extrema is close t.o the 
origin.) Using the standard techniques of supersymmetric quantum mechanics we can 
generate further potentials from V+(z), since we know its ground state wavefunction. 
The explicit expression of the wavefunctions of these potentials contain even more 
Jacobi polynomials. Here we shall not study them further. 

Finally, we inspect the relation of the PIII potential family t o  the Natanzon class 
of potentials (Natanzon 1971, 1979), which depends on six parameters and which has  
hypergeometric functions in the solutions of the corresponding Schrodinger equation. 
It can be shown easily that similarly to the Ginocchio class of potentials (Ginocchio 
1984, 1985) (depending on two parameters, X and U) the three-parameter PI11 pot,en- 
tial family is also a subclass of the general Natanzon class of potentials: however t,he 
restriction imposed on the six parameters of the Natanzon potentials differs in the 
two cases. In order to show this, first we use the well known relationship between the 
Jacobi polynomials and the hypergeometric functions (Abramowitz and Stegun 1970). 
Using (for example) the transformation formula 

p 5!2 i- A; 
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where E ,  is the energy of the ground state in the corresponding Natanzon pot,ential, 
and (contrary to  the SUSYQM) it is not zero in general, rather it can be determined 
from equation (2.21) for the n = 0 case. Now i t  is 

% =  f ( h , - h , ) + [ ( l +  f ) 1 ' 2 - 1 ] { ~ ( h o + h l + 2 ) - ~ [ ( 1 + f ) 1 ~ 2 - 1 ]  } '/* . C 
(3.25) 

C i - i l ~ - l v  t n  tho  Cinncohin nnta-.t:-l -1""" / - e m  P--..,,- 0 4  " I  /lnP7\ F-- thn ,4-+-il-\ 
"..L...YLJ "U " . L I  YIIIVCL..." p " Y C , , Y , L u  c1-0 \"CF v " " p ' c L  C L  U. ,l<", , I", Y I 1 S  " C U L L . " ,  

we have one parameter (C) which is related t o  the subset of parameters ( U ,  eo and c1) 
appearing in the differential equation (2.20) and which acts as a scaling parameter, 
but we have two parameters ( p  and q )  related to the other subset of parameters h,, 
h ,  and f, determining the actual shape of the potential. Another similarity between 
the PI11 and the Ginocchio potentials is that one of the three parameters co, cl and 
a is strict!y zero, which enab!es "8 io express the energy fro= eq;&ofi (2.21) 1" 
a relatively simple way. (This parameter is a in the example presented above, but 
using other transformations linking the Jacobi polynomials with the hypergeometric 
functions (see, for example, Abramowitz and Stegun 1970) we could also get other sets 
of relations instead of (3.24), among which we would have co = 0 or c1 = 0 as well.) 
In the case of shape-invariant potentials only one of the three paramet,ers can differ 
from zero (see, for example, Cooper e t  a1 1987), so the determination of the energy 
spectrum from (2.21) becomes straightforward for these potentials. 

These arguments help us to illuminate the problem of finding shape-invariant po- 
tentials among the general Natanzon class ones. The shape-invariance requirement 
(A.8) imposes strong constraints on the structure of the energy spectrum and on the 
relation between the parameters appearing in the expression of the energy spectrum 
and the potentials (see (A.IO), (A.11)). Therefore we expect that the complex spectra 
of the potentials like the PI11 and Ginocchio class (arising from the fact that we have 
more than one non-zero pammeters among c,, c1 and 0 )  cannot reproduce this simple 
pattern. (This is also discussed by Cooper el a1 (1987).) Note, however, that in the 
PI11 case formally we can express the energy spectrum in a form required by shape 
invariance (see (A.lO)), 

n 

En = x R ( p k , q k )  (3 .2G)  
k = l  

where 

R(Pk ,B , )  = 2 c  (Pk - i) qk - 2c ( p k - I  - 5) 1 qk-1 (3.27) 

hut since the functional (in (A. l l ) )  which links the parameter sets { p k . q k )  and 
{ p k - l , q k - l )  is too complex (see equat,ion (3.6)) we cannot get a shape-invariant po- 
tential. It is worth mentioning here that ,  contrary to  the Ginocchio pot,ential, which 
goes to  a shape-invariant (Posch-Teller) potential i n  the X = 1 limit, the PI11 PO- 
tential has no shape-invariant limiting case. This is in connection wit,li the fact that 
due to  the relatively complex way X is related to c,, cI and a (i.e. c, = 0, cI  = l / X 4 ,  
a = (1 - X2)/X4, see Cooper el a/ (1987)), the A = 1 choice plays a distinguished 
role among the possible values, while the parameter C has no similar special value 
(see (3.24)). 
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4. Summary and conclusions 

We have investigated a family of solvable potentials related to  the Jacohi polynomials 
as solutions of the corresponding Schrodinger equation. Although this potential fam- 
ily was  found in connection with investigations concerning shape-invariant potentials 
(LBvai 1989), it turned out not t o  be shape invariant. 

These potentials depend on three parameters, one of which is a scaling parameter 
of !he energy (and ?he coordinate), while !he ?run other deterrnine ?he ahape of the 
potentials. Characteristic shapes (minima and maxima) of the potentials depending 
on these two parameters have been identified. The coordinate is restricted to  positive 
values only, so the PIII potentials can be interpreted as the radial part of central 
potentials in three dimensions. A characteristic feature of these potentials is their 
behaviour near the origin. Independently of the parameters they tend to --M as 
V ( z !  N -A+-’. This nemerica! const,ant is not st,rong enough for the pr t ic le  to 
‘fall’ into the attractive potential (Landau and Lifshitz 1977). I t  was  shown that these 
potentials can support only a finite number of bound states, depending on the actual 
value of the parameters. The energy spectrum and the corresponding wavefiinctions 
have been determined (for I = 0). 

The supersymmetric partner of the general PI11 potential has also been studied. 
Since the wavefunctions of the supersymmetric partner potential can be written a5 
linear combinations of two Jacobi polynomials, these potentials cannot belong to the 
PI11 potential family. 

It was shown that the PIII potentials form a special subclass of the six-parameter 
Natanzon potential class (Natanzon 1971,1979). We have also pointed out  similarities 
and differences between the PIII  family and the Ginocchio class of potentials (Ginoc- 
chi0 1984,1985) ,  which also forms a special (two-parameter) subclass of the Natanzon 
potentials. These considerations may help’ us to  identify. further subclasses of the 
Nataazon potentials and may serve as an aid for further investigations concerning the 
relationship between shape invariance and solvability. 

ab ~~ 

Appendix 

Here we briefly review the basic results of SusYQM used in the main body of the paper. 
Introduction to  the general theory of SUSYQM can be found, for example, i n  the works 
of Cooper and Freedman (1983), Andrianov e l  a /  (1984) and Sukumar (1985). 

In SUSYQM two one-dimensional Hamiltonians related by supersymmetry can he 
written as ( h  = 2m = 1) 

dZ 
(A.1)  H ,  = -7 dx + V*(z) 

where V-(z) and V+(z) are expressed using the superpotential W(z):  

V*(z)  = Wi(x)  * W’(x). (A.2)  

The partner Hamiltonians can be factorized as 
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where 

(A.4) 
d 

d z  z) A t = - - + W (  d z  2). 
d 

A = - + W (  

In the case of unbroken supersymmetry the ground state of H- has zero energy 
(Eh-) = 0) and the ground state wavefunction is related to the superpotential W(Z) 
by 

(A.5)  W(Z) = -(In*&- 1 (z))'. 

E,(+) =  EA^\ n = 0, 1 , .  . . E,$-) = 0. (A.6) 

The energy eigenvalues of H -  and H ,  are identical, except for the ground state: 

The eigenfnnctions of H- and H+ (denoted by &)(z) and C'(+)(z), respectively) are 
connected by the operators A and A t :  

The concept of shape invariance (Geudenshtein 1983) relates supersymmetric part- 
ner potentials through the parameters appearing in them. Potentials are called shape 
invariant if their dependence on z ,  the coordinate is similar and they differ only i n  the 
potential parameters. In particular, V+(z,a)  and V+(z,a) are shape invariant if they 
satisfy the shapeinvariance relationship 

v+(z,ao) - v-(z,al) E W ( z , a 0 ) +  W'(z ,ao)  - W 2 ( z , a l )  + W'(z,al)  = R(a,) 
(A.8)  

where R(a) depends only on the parameters a (and not on the coordinate z), and the 
parameters a l  and uo are related by a functional: 

al = J ( a o ) .  (A.9) 

A consequence of shape invariance is that  the energy spectrum can be written in terms 
of the constants R ( a k ) :  

(A.lO) 

where ak is obtained from a. by acting on it with the functional f k times: 

a t  = J k ( a o ) .  ( A . 1 1 )  
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